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Abstract

Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and
basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and
requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins
with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of
kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has
been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential
effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7
expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and
siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery.
Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length
and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-
dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly
linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal
storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation.
To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.
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Introduction

The directional transfer of membrane and soluble proteins from

one cellular compartment to another is essential for cell survival. A

critical step in these membrane trafficking events is the selective

fusion of vesicles with target organelles. SNAREs (Soluble N-

ethylmaleimide-sensitive factor Attachment protein REceptors)

are key components of the machinery required to maintain

selectivity, and are directly responsible for fusion. These small

proteins localize to organelle and vesicle membranes and interact

when the two membranes are in close proximity. The energy

released from their interaction is thought to drive fusion [1].

One R-SNARE on the vesicle membrane and three Q-SNAREs

on the target membrane interact to form a helical bundle. In

general, four distinct SNAREs participate in the helical bundle,

although there are some Q-SNAREs (members of the SNAP25

subfamily) that contribute two helices to the coil [2]. Unlike most

SNAREs, which are transmembrane proteins, these Q-SNAREs

that contain two SNARE motifs are palmitoylated [1]. A subset of

R-SNAREs fall into a family known as VAMPs (Vesicle Associated

Membrane Proteins), based on their initial discovery in synaptic

vesicle membranes.

Newly synthesized proteins must be properly transported to the

apical or basolateral domain to maintain epithelial cell function. A

number of SNAREs have been implicated in polarized trafficking.

Although their localizations were initially controversial, it has since

been well established that the Q-SNAREs syntaxin 3 and syntaxin-

4 localize to the apical and basolateral surfaces, respectively, in the

kidney and in MDCK cells [3–6]. The R-SNARE VAMP3 (aka

cellubrevin) has been suggested to pair with syntaxin-4 in

basolateral delivery [7], however, the R-SNAREs required for

apical trafficking pathways have not been identified. Some studies

have suggested that VAMP7 and VAMP8 are involved in apical

trafficking [8,9] but no defects in cell polarity have been observed

in knockout mice [10,11].

Many unique transport pathways exist for newly synthesized

proteins to reach the apical and basolateral domains of polarized

cells [12]. Newly synthesized proteins are directed towards

particular delivery routes depending on their sorting determinants

[13,14]. In many cases, post-Golgi trafficking of these proteins

involves intermediate transport through endocytic compartments

prior to surface delivery. Many apical proteins traffic through the

Rab11-positive Apical Recycling Endosome (ARE) prior to arrival

at the apical surface, and there appear to be multiple, differentially

regulated exit pathways from this compartment [14,15]. Endolyn,

a transmembrane protein sorted by an N-glycan dependent

mechanism, traffics through the ARE en route to the apical surface.

From this compartment, endolyn is delivered to the apical

membrane via a pathway that requires the motor protein myosin

Vb [13]. In contrast, a truncated, soluble version of endolyn

(Ensol), traverses the ARE but its apical secretion is independent of

myosin Vb activity [15]. Other apical proteins, including the lipid-
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raft associated protein influenza hemagglutinin (HA), appear to

bypass the ARE and may instead transit apical early endosomes

[13]. The VAMPs that mediate fusion of these distinct endosome-

derived vesicles with the apical surface have not been identified.

Recent studies in other epithelial cell types have implicated a

role for VAMP7 in a subset of apical delivery events. In polarized

Fischer rat thyroid cells, where apically destined proteins are

vectorially delivered to the cell surface, knockdown of VAMP7

disrupted apical delivery of both the lipid-raft associated protein

placental alkaline phosphatase (PLAP) and the lipid-raft indepen-

dent protein dipeptidylpeptidase IV (DPPIV) [9]. Different results

were obtained in the intestinal epithelial cell line Caco-2, which

use both transcytotic and vectorial routes to deliver newly

synthesized proteins to the apical surface [16,17]. In these cells,

delivery of DPPIV, which traffics primarily through the transcy-

totic pathway, was unaffected by VAMP7 knockdown, whereas

vectorial delivery of the lipid-raft dependent protein PLAP was

disrupted [9].

Deciphering the role of VAMPs is complicated because

SNAREs can assemble in many combinations to provide a large

array of selective complexes. That said, there are redundancies in

SNARE function, such that the same SNARE complex may

function at multiple steps in membrane traffic. SNAP23 is involved

in fusion of post-Golgi vesicles with the plasma membrane [18,19],

as well as in transcytosis [20]. Additionally, multiple SNARE

complexes may mediate the same fusion pathway. For example,

both VAMP7 and VAMP8 can form complexes with syntaxin-7

and both are involved in late-endosome to lysosome fusion [21].

Such redundancies have made it difficult to sort out the SNAREs

involved in a given transport pathway.

In this study, we sought to investigate whether VAMP7 plays a

role in any of the many delivery pathways to the apical surface of

MDCK cells. VAMP7 is localized primarily in lysosomal

compartments in many cell types, and has a well-established role

in lysosomal delivery [21–31]. However, VAMP7 was also found

to be enriched at the apical plasma membrane of polarized

intestinal cells [8], and has been shown to complex with the apical

Q-SNARE, syntaxin 3 [8,18,27]. Moreover, adding antibody

against VAMP7 to permeabilized cells reduced the trans-Golgi

network (TGN)- to-apical surface transport of HA in MDCK cells

[18]. Surprisingly, however, we found that siRNA-mediated

knockdown of VAMP7 had no effect on apical delivery of a

variety of cargoes in MDCK cells. In contrast, we observed defects

in ciliogenesis and in cystogenesis upon knockdown of VAMP7.

To our knowledge, this is the first study implicating an R-SNARE

in these cellular events.

Results

Expression and Subcellular Localization of VAMP
Isoforms in MDCK Cells
Multiple VAMPs, including VAMP1, VAMP2, VAMP3,

VAMP4, VAMP5, VAMP7 and VAMP8 are expressed in rat

kidney [32–36]. All of these were readily detected by reverse

transcription-polymerase chain reaction (RT-PCR) of RNA

isolated from polarized MDCK cells (Figure 1). VAMP7 is

associated with endosomes and lysosomes in many cell types, and

we sought to confirm its localization in polarized MDCK cells. We

were unable to detect endogenous VAMP7 in MDCK cells using

commercially available antibodies, so we expressed low levels of

tagged VAMP7 in these cells by transient transfection, then

allowed the cells to differentiate on permeable supports prior to

processing for immunofluorescence. Pearson’s correlation coeffi-

cients were determined using Imaris software for each of these

markers (Table 1). VAMP7 proteins modified by a cytoplasmic

amino-terminal GFP tag (GFP-VAMP7) or by a lumenally-

oriented carboxy-terminal HA epitope tag (VAMP7-HA) coloca-

lized with one another when coexpressed, suggesting that neither

tag disrupts the targeting of heterologously expressed VAMP7

(Figure 2A; Table 1). Consistent with previous reports, we found

little if any detectable VAMP7 at the plasma membrane at steady

state (not shown and [30,37]). GFP-VAMP7 colocalized poorly

with the Golgi marker giantin (Figure 2B; Table 1) or with markers

of early endosomes (EEA1, GFP-Rab5; Figure 2C and 2D;

Table 1) or the ARE (SNAP-Rab11a; Figure 2E; Table 1) in

polarized cells. More colocalization was observed with the

endosome marker Rab4-GFP, which mediates fast recycling from

early endosomes (Figure 2F; Table 1). The greatest extent of

colocalization was observed with the lysosomal marker lysosome

associated membrane protein 2 (LAMP2; Figure 2G; Table 1). We

observed essentially similar results in subconfluent MDCK cells

(data not shown). The observed colocalization between VAMP7

and LAMP2 is consistent with previous studies, which reported

that VAMP7 colocalizes with lysosomal markers Niemann-Pick

C1, lysosomal glycoprotein 120, LAMP1, and CD63 [22–

25,27,28,30,31]. VAMP7 was also shown to partially colocalize

with the transferrin receptor [another marker of recycling

endosomes [22,27]].

VAMP7 Knockdown does not Affect Delivery of Apical
Cargoes
Multiple pathways exist for newly synthesized proteins to reach

the apical membrane of polarized cells [12]. Endolyn traverses the

Rab11-positive ARE en route to the apical surface, and is delivered

to the apical surface via a pathway that requires the motor protein

myosin Vb [13]. In contrast, the lipid-raft-associated protein

influenza HA is apparently excluded from the ARE [13]. Soluble

proteins also apparently enter the ARE but can exit via myosin

Vb-dependent or independent pathways [15]. Based on previous

observations implicating VAMP7 in apical biosynthetic delivery

[8,9], we hypothesized that VAMP7 may play a role in apical

delivery of a subset of apical cargo in MDCK cells [15]. To test

our hypothesis we knocked down VAMP7 in MDCK cells and

determined using biochemical approaches whether apical delivery

of various membrane and secreted proteins known to take distinct

routes to the surface is compromised. We tested the efficacy of

multiple siRNAs targeting canine VAMP7 using RT-PCR to

estimate the extent of knockdown. Of these, we selected a siRNA

that consistently achieved ,80% knockdown of VAMP7 mRNA

(Figure 3A). The efficiency of knockdown was confirmed by qPCR

(Fig. S1). Importantly, knockdown of VAMP7 did not reduce the

Figure 1. VAMP isoforms in MDCK cells. (A) mRNA isolated from
MDCK cells and converted to cDNA was subjected to reverse
transcription PCR using primers designed to detect VAMP isoforms.
VAMP1 (218 bp expected product), VAMP2 (101 bp), VAMP3 (462 bp),
VAMP4 (244 bp), VAMP5 (216 bp), VAMP7 (261 bp), and VAMP8
(298 bp) were detected. Actin (231 bp) was detected as an additional
control to ensure amplification of mRNA and reverse transcriptase was
excluded from the indicated sample as a negative control.
doi:10.1371/journal.pone.0086425.g001
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levels of other VAMPs expressed in MDCK cells as assessed by

quantitative PCR (qPCR) (Fig. S1). Cells transfected with control

or VAMP7 siRNA were plated on permeable supports for four

days prior to quantitating the effect of knockdown on the kinetics

of surface delivery using a pulse chase approach as described in

Materials and Methods. Knockdown of VAMP7 had no effect on

apical delivery of the lipid-raft associated protein influenza HA,

which bypasses the ARE en route to the surface [Figure 3B, [13]],

Similarly, we observed no effect of VAMP7 knockdown on apical

delivery kinetics of the glycan-dependent protein endolyn, which

traffics through the Rab11-positive ARE and is delivered to the

apical surface in a myosin Vb-dependent manner [Figure 3C,

[13]]. Additionally, we observed no effect on the apical secretion

of Ensol, a truncated version of endolyn that transits the ARE but

unlike endolyn, does not require Myosin Vb for apical delivery

[Figure 3D, [15]]. VAMP7 knockdown also had no effect on the

kinetics or polarity of delivery of two other apically-destined

proteins [the multiligand receptor megalin and secreted glycosy-

lated growth hormone [15,38]; data not shown].

VAMP7 Knockdown Decreases Cilia Length and
Frequency
The primary cilia of polarized kidney cells are specialized apical

structures believed to function as mechanosensors that sense

changes in flow to modulate downstream signaling pathways [39].

Although little is known about how proteins traffic to this

compartment, some ciliary proteins are thought to be delivered

to the apical plasma membrane prior to reaching the primary

cilium [40]. Transport to the ciliary membrane may then occur by

lateral diffusion across a septin barrier [41,42]. Because one of the

VAMP7 cognate SNAREs, syntaxin 3, was found to be involved in

ciliogenesis [43] we asked whether VAMP7 also has a role in this

process. To this end, we transfected MDCK cells with control or

VAMP7 siRNA, plated the cells on permeable supports, and

processed them after four days for indirect immunofluorescence to

detect the cilia marker acetylated tubulin [44]. Images of

randomly selected fields were acquired using an epifluorescence

microscope, and cilia length and the percent of cells elaborating a

primary cilium were quantified in randomly selected fields using

ImageJ. As shown in Figure 4 (panels A, C, E), we found a

statistically significant decrease in the median length of cilia in cells

depleted of VAMP7 compared with control cells (Figure 4 C,E).

Additionally, the fraction of cells expressing a primary cilium was

significantly decreased (Figure 4 B,D). Similar results were

obtained in the rat neuronal cell line PC-12 (Figure S2). In

Table 1. Colocalization of VAMP7 with organelle markers.

Pearson’s Correlation Coefficient

GFP-VAMP7 and VAMP7-HA 0.73660.108

GFP-VAMP7 and giantin 0.17060.060

GFP-VAMP7 and EEA1 0.15160.055

Rab5-GFP and VAMP7-HA 0.37960.188

Rab11a-SNAP and VAMP7-HA 0.35160.222

Rab4-GFP and VAMP7-HA 0.50460.099

GFP-VAMP7 and LAMP2 0.73660.108

MDCK cells cultured on Transwell supports were transfected with VAMP7
constructs and where indicated, with tagged organelle markers or stained for
endogenous organelle markers. Imaris software was used to determine the
Pearson’s correlation coefficient between the markers. An R value of 1.0 would
indicate perfect colocalization, however, variability in intensities of each
channel can decrease the coefficient.
doi:10.1371/journal.pone.0086425.t001

Figure 2. VAMP7 localization in polarized MDCK cells. Polarized
MDCK cells grown on Transwells were transfected with GFP- or HA-
tagged VAMP7 constructs and stained for the indicated endogenous
proteins or co-transfected GFP- or SNAP-tagged organelle markers. (A)
GFP-VAMP7 and VAMP7-HA colocalize with each other. Little colocaliza-
tion is observed between VAMP7 and (B) giantin (Golgi), (C) EEA1 (early
endosomes), (D) Rab5-GFP (early endosomes), or (E) Rab11a-SNAP.
More extensive colocalization (marked by arrowheads) is observed
between VAMP7 and (F) Rab4-GFP (recycling endosomes) and (G)
LAMP2 (late endosomes and lysosomes).
doi:10.1371/journal.pone.0086425.g002
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contrast, knockdown of VAMP8 had no effect on either cilia

length or frequency (Figure 4A, 4D).

Several known interacting partners for VAMP7 have previously

been implicated in ciliogenesis. For example, MDCK cells

depleted of the VAMP7-interacting partner syntaxin 3 had fewer

and shorter cilia than control cells [43]. Moreover, knockdown of

septin 7, a cytoskeleton-associated GTPase that localizes to the

ciliary base and also binds to the VAMP7 partner AP-3, resulted in

a decrease in cilia length and number [45,46]. Thus, we asked

whether depletion of VAMP7 would affect the steady state

localization of syntaxin 3 and septin 7. Additionally, we tested

whether the localization of Arl6/BBS3, a protein required for

ciliary delivery of a subset of proteins is altered in cells treated with

VAMP7 siRNA. As shown in Figure S3, we could find no obvious

changes in the steady state distribution of any of these proteins

upon knockdown of VAMP7.

Attempts to rescue the effect of VAMP7 knockdown on

ciliogenesis by heterologous expression of human VAMP7 were

unsuccessful. Indeed, we found that cells overexpressing VAMP7

also had somewhat shorter cilia compared with controls (not

shown). Given that VAMP7 functions in a complex with other

SNAREs, it is likely that its expression level relative to endogenous

partners is critical for efficient function. Consistent with this idea,

overexpression of syntaxin 3 has been demonstrated to disrupt the

apical delivery of membrane and secreted proteins in Caco-2 cells

[47]. As an alternative approach to confirm that the changes we

observed were due to a specific consequence of VAMP7 depletion

rather than to an off-target effect of our siRNA oligonucleotide, we

determined the effect on ciliogenesis of a second siRNA

oligonucleotide (VAMP7 #2) that targets a different region of

VAMP7 and knocks down the protein with lower efficiency

(,50% by RT-PCR, data not shown). Transfection of MDCK

cells with the VAMP7 siRNA #2 also led to a decrease in cilia

length and frequency, but to a lesser extent than our primary

siRNA, consistent with the reduced knockdown efficiency of this

oligonucleotide (Figure 4B–D). Together, these data suggest that

knockdown of VAMP7 causes a selective decrease in both cilia

length and frequency.

Changes in cilia length have been linked to alterations in cell

cycle and proliferation [48]. Thus, we asked whether the effect of

VAMP7 depletion on ciliogenesis could be due to changes in cell

proliferation [49]. Indeed, overexpression of the cytosolic fragment

of VAMP7 has been shown to inhibit cytokinesis in BSC1 cells,

resulting in multiploidy [50]. Our studies were performed using

differentiated, superconfluent MDCK cells, the majority of which

should be quiescent. To ensure quiescence, we serum starved

MDCK cells transfected with control or VAMP7 siRNA for 48 h

prior to quantifying cilia length and frequency. Similar to our

normal conditions, knockdown of VAMP7 in starved cells resulted

in a decrease in both of these parameters (data not shown).

Figure 3. Knockdown of VAMP7 has no effect on apical secretion of lipid-raft associated, raft-independent, and secreted cargo. (A)
MDCK cells were transfected with control siRNA or siRNA targeting VAMP7, and knockdown after four days was assessed using RT-PCR. A
representative gel is shown. We routinely observed approximately 80% knockdown using this oligonucleotide. (B) Apical delivery kinetics of the lipid
raft associated protein HA in MDCK cells transfected with control or VAMP7 siRNA were quantitated using a cell surface trypsinization assay as
described in Methods. Results from a representative experiment performed in duplicate are plotted (mean +/2 range). Similar results were obtained
in three experiments. (C) Apical delivery kinetics of the raft-independent protein endolyn were quantitated using a surface biotinylation assay as
described in Methods. The results are representative (mean +/2 range of duplicate samples) of two independent experiments. (D) Apical (AP) and
basolateral (BL) secretion kinetics of Ensol were measured in control and VAMP7 knockdown cells as described in Methods. A representative
experiment (mean +/2 range of duplicate samples) is shown. Similar results were obtained in five experiments.
doi:10.1371/journal.pone.0086425.g003
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Additionally, to confirm that VAMP7 does not alter proliferation

in our system, we quantitated the number of nuclei per field in

control and VAMP7 knockdown cells by DAPI staining. In six

experiments, we observed no significant difference (control

average = 183+/214 cells/field, VAMP7 KD average = 186+/
26 cells/field). Together, these data suggest that the effect of

Figure 4. VAMP7 knockdown decreases cilia frequency and cilia length in MDCK cells. (A) MDCK 2001 cells were transfected as indicated
with control siRNA, our standard VAMP7 siRNA (VAMP7 #1), a less effective VAMP7 targeting sequence (VAMP7 #2), or VAMP8 siRNA. Cells were
cultured for four days on permeable supports, then fixed and processed for indirect immunofluorescence to detect acetylated tubulin and cell nuclei.
Representative fields acquired using epifluorescence microscopy are shown. Scale bar = 10 mm. (B, D) The number of cells in multiple fields was
determined using DAPI nuclear stain and used to quantify the fraction of cells with a primary cilium in each sample. The average of three experiments
is plotted (mean +/2 SEM); *p,0.05 compared to control using one-way ANOVA with Bonferroni correction. (B) Control n = 1,907; VAMP7 n= 1,747;
VAMP7 #2 n= 1,608 cells. (D) Control n = 1,040, VAMP7 n= 1,169, VAMP8 n= 1,049 cells. (C, E) Cilia lengths in multiple fields were measured using
ImageJ software, then sorted by length in ascending order and graphed by percentile (100th percentile = longest cilium in each sample). Each point
on the graph represents the length of an individual cilium. (C) There was a statistically significant reduction in cilia length in cells transfected with
VAMP7 #1 and VAMP7 #2 siRNAs, as assessed by comparing the medians from four experiments (*p,0.05, **p,0.01 using one-way ANOVA with
Bonferroni correction). (E) There was a statistically significant reduction in cilia length in VAMP7 depleted cells, as assessed by comparing the medians
from three experiments (*p,0.05 using one-way ANOVA with Bonferroni correction).
doi:10.1371/journal.pone.0086425.g004
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VAMP7 knockdown on ciliogenesis is not due to effects on the cell

cycle.

VAMP7 Expression Modulates Lysosome Size
VAMP7 has previously been shown to play a role in the delivery

of cargo from endosomes to lysosomes. Inhibition of VAMP7

function decreased EGF degradation in HeLa and reduced

delivery of internalized dextran and BSA to lysosomes in MDCK

cells and NRK cells, respectively [21,23,29]. To test whether

VAMP7 is important for lysosome biogenesis in MDCK cells, we

modulated VAMP7 levels by overexpression of GFP-VAMP7 or

by siRNA-mediated knockdown and examined the consequences

on lysosome size. Overexpression of VAMP7 led to enlargement of

LAMP2-positive organelles (Figure 5A, 5C) and reduced their

number by 68 percent (data not shown). In contrast, knockdown of

VAMP7 caused a reduction in the average volume of LAMP2-

positive structures (Figure 5A, 5C), but increased the number of

LAMP2 structures by 138 percent (data not shown). These data

suggest that, similar to its role in other cell types, VAMP7 is

involved in delivery to lysosomes in MDCK cells.

Perturbation of Lysosome Function per se has no Effect
on Cilia Length
We considered the possibility that the consequences of VAMP7

knockdown on lysosomal size/function and on ciliogenesis could

be directly linked. In support of the latter possibility, siRNA

mediated depletion of a protein implicated in the delivery of EGF

to lysosomes (PTPN23) was also shown to result in fewer cilia in

retinal epithelial cells [46,51]. To test whether there is a

connection between lysosome dysfunction and aberrant ciliogen-

esis, we examined cilia length in an MDCK model for lysosomal

storage disease. Fabry disease is caused by mutations in the

lysosomal enzyme a-gal A that prevents normal catabolism of the

glycolipid globotriaosylceramide [Gb3; [52]]. Transfection of

MDCK cells with an siRNA targeting a-gal A resulted in efficient

knockdown of mRNA as assessed by qPCR (89% reduction;

Figure 6A) as well as in the dramatic increase in accumulation of

Gb3 (measured using the anti-Gb3 antibody CD77; Figure 6B).

VAMP7 levels in a-gal A knockdown cells were not different from

control, as confirmed by qPCR (1.34 fold change; data not shown).

a-gal A knockdown led to a 167% increase in lysosome volume

(Figure 6C; data not shown). Neither cilia length (Figure 6D) nor

Figure 5. VAMP7 knockdown and overexpression alters lysosome volume. MDCK cells were transfected with cDNA encoding GFP-VAMP7
(A) or with control or VAMP7 siRNA (B) and processed for immunofluorescence to detect LAMP2 after four days. (C) Percent change +/2 standard
error of the mean in lysosome volume normalized to its respective control was quantitated using Imaris software as described in Methods. Compared
to cells transfected with control siRNA, cells treated with VAMP7 siRNA had smaller LAMP2-positive structures compared to control. In contrast,
VAMP7 overexpression (OE) led to an enlargement of LAMP2-positive structures. A total of ten stacks in two experiments were quantitated Scale
bars = 10 mm; (* p,0.01 using two-sample t-test; **p,0.001 using paired t-test; see Methods for details.).
doi:10.1371/journal.pone.0086425.g005
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frequency (Figure 6E) was significantly altered in a-gal A-depleted
cells compared with controls, suggesting that there is no direct link

between disrupted lysosome function and ciliogenesis.

VAMP7 Knockdown Leads to Aberrant Cyst Morphology
Many proteins that have been implicated in ciliogenesis also

have a functional effect on cyst formation [43,44,53–57]. Thus, we

Figure 6. Perturbing lysosomes has no effect on ciliogenesis. MDCK cells were transfected with control or a-gal-A siRNA and cultured for four
days on permeable supports, then harvested for (A) RT-PCR (expected products are 898 bp for a-gal-A and 231 bp for actin) or (B–E) processed for
immunofluorescence. (B) Knockdown of a-gal-A caused a dramatic cellular accumulation of its substrate Gb3, as shown by indirect
immunofluorescence using the anti-Gb3 antibody CD77. Scale bar = 10 mm. (C) Knockdown of a-gal-A lead to an increase in late-endosome/
lysosome size, and a decrease in the number of these structures, shown by indirect immunofluorescence of LAMP2. Scale bar = 5 mm. (D) Cilia were
detected using anti-acetylated tubulin antibody, and cilia from random fields were measured and counted using ImageJ. The cilia were sorted by
length in ascending order and graphed by percentile as in Fig. 4. (E) The number of cilia in each field was divided by the number of nuclei (identified
using DAPI staining) and the mean +/2 SEM of three experiments is shown. There is not a significant difference in cilia length or in the percent of
cells with cilia in control and a-gal-A siRNA transfected cells as assessed by t-test of the medians in three experiments. Data represent measurements
from 1,535 cells for control siRNA and 1,407 cells for a -gal-A siRNA-treated cells. Scale bar = 10 mm.
doi:10.1371/journal.pone.0086425.g006
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tested whether knockdown of VAMP7 affects the formation of

hollow cysts when MDCK cells are grown in a three-dimensional

basement membrane Matrigel matrix for six days. Cells transfect-

ed with control siRNA predominantly formed cysts with a single

hollow lumen (Figure 7A, 7B). In contrast, knockdown of VAMP7

led to a significant decrease in the number of normal lumens and

an increase in the number of cysts with abnormal cysts with either

no lumen or with multiple lumens (Figure 7A, 7B), though the

majority of abnormal cysts had filled lumens. Knockdown of

another R-SNARE, VAMP8, had no effect on cystogenesis,

indicating that the effect is specific to VAMP7 (Figure 7A, 7B).

Additionally, a-gal A knockdown showed no change in cystogen-

esis indicating that the effect of VAMP7 on cystogenesis is

independent of its effects on lysosome fusion (Fig. 7A, 7B). This

suggests that the effect of VAMP7 knockdown on cilia length has

functional consequences on lumen formation.

Discussion

Individual SNARE proteins localize to distinct plasma mem-

brane subdomains of polarized epithelial cells to provide specificity

in vesicle fusion with these domains. Here, we investigated the role

of VAMP7 in lysosomal and apical delivery in MDCK cells. We

found that VAMP7 is predominantly localized to late-endosomes

and lysosomes, and is partially associated with recycling endo-

somes. Both VAMP7 knockdown and overexpression altered the

size and number of LAMP2-positive compartments, consistent

with previous reports demonstrating a role for this SNARE protein

in late-endosome-to-lysosome fusion. Though VAMP7 has been

previously implicated in apical trafficking in several epithelial cell

types, we observed no effect of VAMP7 knockdown on the

delivery of a number of cargoes known to take distinct routes to

the apical surface in MDCK cells. However, we did observe a

significant reduction in the fraction of cells expressing a primary

cilium as well as a decrease in mean cilia length upon VAMP7

knockdown. Our results suggest that VAMP7 plays an important

role in delivery to lysosomes and ciliogenesis in MDCK cells, but is

not essential for surface delivery of apical proteins.

VAMP7 is unique among VAMPs in that it has an N-terminal

extension of 120 amino acids termed the longin domain. There are

two additional R-SNAREs with longin domains: Ykt6, and Sec22

[58]. Intriguingly, these three longin domain-containing VAMPs

are the only R-SNAREs that are conserved in all eukaryotes,

suggesting that the longin domain may have essential functions in

trafficking [58]. Consistent with previous reports [21–31], we

found that VAMP7 localizes predominantly to LAMP2-positive

structures that include late endosomes and lysosomes. VAMP7

localization to these compartments is mediated by the interaction

of its longin domain with the adaptor protein AP-3 [27,29,59]. AP-

3 has also been implicated in the surface delivery of VSV-G [60],

and in LAMP1, LIMPII and CD63 delivery to lysosomes [61,62].

Although VAMP7 has been previously implicated in apical

trafficking [8,9,18] we observed no changes in the apical delivery

of a number of proteins that take different routes to the surface.

This is in contrast to published data in MDCK cells showing that

adding antibody against VAMP7 to permeabilized cells reduced

the TGN to apical surface transport of HA [18]. It is conceivable

that sufficient VAMP7 remains after knockdown to enable apical

delivery or that another VAMP with redundant function also

operates in these pathways. Indeed, functional redundancies have

made it difficult to sort out the SNAREs involved in a given

transport pathway. For example, neither individual knockdown of

VAMP1, VAMP2, VAMP3, VAMP4, VAMP5, VAMP7, or

VAMP8, nor combined knockdown of VAMP3, VAMP4,

VAMP7, and VAMP8 affected the exocytosis of growth hormone

in neuronal C1 cells [63]. In other instances, the role for a given

VAMP in a particular trafficking step became evident only when

the need for transport was exacerbated. For example, constitutive

mucin secretion is normal in the lung of the VAMP8 knockout

mouse, whereas a defect in mucous secretion could be observed

after stimulation with IL-13 [64]. It may be necessary to deplete

Figure 7. VAMP7 knockdown disrupts cyst morphology. MDCK
cells were transfected with control, VAMP7, VAMP8 or a-gal A siRNA as
indicated, then trypsinized and resuspended in basement membrane
matrix the following day. Six days later, the cells were fixed and
processed for immunofluorescence with anti-acetylated tubulin anti-
body to detect cilia. Confocal imaging revealed normal hollow lumens
and cells with cilia projecting into the lumen in control, VAMP8 or a-gal
A siRNA treated cells. However, transfection with VAMP7 siRNA led to
an increase in the fraction of abnormal cysts with either filled lumens or
multiple lumens. (A) Representative examples of a normal cyst in
control siRNA-treated cells and an abnormal cyst in a VAMP7 siRNA
treated sample are shown. (B) One hundred cysts from each siRNA
treatment were classified as normal (N) or abnormal (Ab) in three
experiments. *p,0.001 using one-way ANOVA with Bonferroni
correction.
doi:10.1371/journal.pone.0086425.g007
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multiple VAMPs or to somehow stress the secretory pathway upon

VAMP7 knockdown in order to observe a defect in apical

trafficking in MDCK cells.

The primary cilium is a specialized subdomain of the apical

surface. Our data show that VAMP7 plays an important role in

ciliogenesis; however, we do not yet know its role in this process.

The cilium is too narrow to accommodate transport vesicles and

diffusion of proteins into the cilium is restricted by a large protein

complex at the transition zone [45,65,66]. Delivery of transmem-

brane proteins to the cilium is thought to happen in one of two

ways. Some ciliary proteins are inserted first in the apical plasma

membrane and then laterally cross the transition zone into the

periciliary base, as has been observed for the Sonic hedgehog

receptor, Smoothened [42]. Alternatively (or in addition), some

proteins are delivered directly to the periciliary base [41]. From

this region, membrane proteins are transported into the cilium by

intraflagellar transport (IFT) mediated by IFT protein complexes

that also contain motor proteins [49]. Although we did not detect

any changes in the distribution of the BBSome-associated protein

Arl6/BBS3 upon VAMP7 knockdown, more thorough studies will

be necessary to determine whether VAMP7 facilitates the

transport of ciliary proteins to the apical surface and/or directly

to the periciliary base.

Although several known interacting partners for VAMP7 have

also been implicated in ciliogenesis, our data suggest that the

effects of VAMP7 knockdown are not due to disruption of their

localization or function. Similar to VAMP7, loss of its interacting

partner syntaxin 3 has been shown to disrupt ciliogenesis [43].

However, we observed no changes in syntaxin 3 localization upon

VAMP7 knockdown. Another VAMP7 partner, SNAP25 (the

neuronal-specific homolog of the ubiquitous SNAP23) localizes to

cilia and has also been implicated in ciliogenesis [19,67]. It is not

known whether SNAP23 is involved in ciliogenesis. Additionally,

AP-3, which binds to the longin domain of VAMP7, also interacts

with Septin 7, a cytoskeleton-associated GTPase localized at the

ciliary base [45,46]. This interaction may localize VAMP7 to its

site of function in ciliogenesis, in addition to its role in localizing

VAMP7 to endosomes and lysosomes [27,29,59]. Septin 7

knockdown caused a decrease in cilia length and number [46],

suggesting that this septin may function in ciliary delivery at the

transition zone. We found no effect of VAMP7 knockdown on

septin 7 distribution, suggesting that VAMP7 modulates ciliogen-

esis via an effect downstream of septin 7 interaction.

Our data suggest that there is not a direct connection between

the effects of VAMP7 knockdown on lysosomal function and on

the defects in ciliogenesis and cystogenesis that we observed.

Knockdown of a-gal A, deficient in the lysosomal storage disorder

Fabry disease, led to the cellular accumulation of Gb3 but caused

no defect in ciliogenesis. This is consistent with data showing that

the pharmacological inhibitor concanamycin A, which blocks

lysosomal acidification, had no effect on cilia length [51].

However, knockdown of PTPN23, a protein tyrosine phosphatase

implicated in delivery of EGF to lysosomes, was previously shown

to decrease the fraction of cells elaborating a primary cilium

[46,51]. PTPN23 knockdown also led to decreased levels of

transferrin receptor at the surface, likely due a recycling defect

[51]. It is possible that the effect of PTPN23 knockdown on

ciliogenesis is related to its function in endosomal sorting rather

than trafficking to lysosomes [51]. This is an intriguing possibility

considering that we found VAMP7 partially colocalized with

Rab4-positive recycling endosomes, and a number of proteins

involved in recycling have been implicated in ciliogenesis [46].

Together, our data suggest that protein delivery to cilia and

lysosomes in MDCK cells is more heavily reliant on VAMP7

function compared with other pathways in which VAMP7 may be

also involved. Our studies do not reveal the precise role of VAMP7

in ciliogenesis, but support the idea that its functions in ciliogenesis

and cystogenesis are independent of its role in lysosomal fusion.

Further studies will be required to determine which step(s) in

ciliogenesis require VAMP7.

Materials and Methods

RT-PCR and qPCR
RT-PCR was performed as described in [68]. RNA was

extracted using the Ambion RNAqueous phenol-free total RNA

isolation kit. Turbo DNA-freeTM kit (Ambion) was used to remove

contaminating DNA from RNA preparation. RNA preparations

were treated with Turbo DNase for 30 min at 37uC and DNAse

inactivation reagent was added for 2 min at RT. Equal amounts of

RNA (1–2 mg), 2 ml of Oligo(dT)Primer (Ambion) and water

(nuclease-free, to a total volume of 12 ml) were mixed, heated at

72uC for 3 min, and placed on ice, then centrifuged briefly. Two

ml of 10x RT buffer (Ambion), 2 ml 2.5 mM dNTP mix

(Invitrogen), 0.5 ml Moloney Murine Leukemia Virus Reverse

Transcriptase (MMLV-RT; Ambion) (or water for control

samples), 0.5 ml of RNAse inhibitor (Ambion), and 2 ml nucle-
ase-free water were added and the sample was incubated at 42uC
for 1 h and then at 92uC for 10 min. A 3 ml aliquot of this reaction
was mixed with 2.5 ml of 10 mM sense and antisense primers,

10 ml of 5x PCR buffer, 0.5 ml of enzyme (NEB Phusion), 3 ml of
DMSO, and 31.5 ml of PCR grade water, placed into a 0.6-ml

thin walled tube, and incubated in a Bio-Rad thermocycler. The

cycle started at 95uC for 4 min followed by five cycles of PCR:

95uC for 30 sec, 65uC for 30 sec (decreased by 1uC each round),

72uC for 30 sec. The next steps were then repeated 22 times: 95uC
for 30 sec, 62uC for 30 sec, 72uC for 30 sec, ending with a single

incubation at 72uC for 5 min and a hold at 4uC. Fifteen ml of the
reaction mixture was removed and electrophoresed on a 1.5%

agarose gel. The primer sequences used for RT-PCR were as

follows: actin 59-ACCTTCAACTCCATCATGAAG-39 and 59-

CTGCTGGAAGGTGGACAG-30, canine VAMP1 59-ACAG-

CAAACCCAGGCACAAGTGG-39 and 59-TGGCACAGA-

TAGCTCCCAGCAT-39, canine VAMP2 59-TGGAGCGG-

GACCAGAAGCTGT-39 and 59-

TTTGCGCTTGAGCTTGGCTGC-39, canine VAMP3 59-

CTGCCACCCCTAAGGATCAA-39 and 59-CCCACGCT-

GAATTTGAGAGG-39, canine VAMP4 59-AC-

CGCGCTTGATTTGGTGACA-39 and 59-GGCAAAACA-

GAGGCTGGTTATCTGC-39, canine VAMP5 59-

GCTCCACATGCCCAGGACGC-39 and 59-

TGCCCTCAAGGGCCAGTCTGT-39, canine VAMP7 39-

AGTGGTGGAGACTCAAGCCCA-59 and 59-ATCCACCA-

CAGAGAGGTGACACA-39, canine VAMP8 59-

TTTCGCCACCCATGCCATCCC-39 and 59-ACCGGCCAC-

CATCAGTGTCCT-39, rat VAMP7 59-GTTGCCAGGG-

GAACCACTAT-39 and 59-GCCAGAACGCTCGAAAACTC-

39, a-gal A 59-TGTGCAACGTTGACTGCCAAGAAG-39 and

59-TCCTGCAGGTTTACCATAGCCACA-39. For qPCR RNA

was extracted and converted to cDNA as described above. SYBRH
Select Master Mix (Applied biosystems) was added to triplicate

samples of cDNA and primers. The primer sequences used for

qPCR were as follows: actin 59-GATCAAGATCATCG-

CACCCC-39 and 59-ACAGTCCGCCTAGAAGCATT-39,

VAMP1 59-GGAGGAAGTGGTGGACATCAT-39 and 59-

GCTGTGACAGTATCTCATCCCT-39 VAMP2 59-GGAG-

GATGGGTCGGCTAC-39 and 59-TCTCCTGTTACTGGT-

GAGGTT-39, VAMP3 ATCGTGCAGACGCGCTA and
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CCTATCGCCCACATCTTGC, VAMP4 59-

GGTGGCGTGGATGCAAAATAA-39 and 59-

GCGCGGTATTTCAAGACTGT-39, VAMP5 59-

GCCTTCAGCAAGACAACCAA-39 and 59-TAGATCCGG-

CAACGGACATT-39, VAMP7 59-GGAGGATTTT-

GAACGTTCCCG-39 and 59-GATGCTTCAACTGTG-

CAGCC-39, VAMP8 59-GATCTGGAAGCCACATCGGA-39

and 39-GTGGCGAAAAGCACGATGAA-39, a-gal A 59-

TCTTGGCCTGGACATCTTCT-39 and 59-TCACTAGCA-

TATCTGGGTCGT-39. SYBR-Green fluorescence was detected

using a CFX96TM Real-Time System with thermal cycling

controlled by a C1000 TouchTM Thermal Cycler (Bio-Rad) under

standard cycling mode. Reactions were run using the following

parameters: UDG activation: 2 min at 50uC; DNA polymerase

activation: 2 min at 95uC, and 40 cycles of denaturing at 95uC for

15 s and annealing/extending at 60uC for 1 min. A dissociation

curve was generated following each run and the derivative plot of

melting temperatures was assessed for the presence of contami-

nating products. Five-point standard curves were generated for

each set of primers using 10-fold dilutions of cDNA obtained from

a pool of three control samples of MDCK cells. Real-time PCR

efficiencies for each set of primers were determined according to

the following equation: E= 10(21/slope). Primers that differed by

less than 10% in efficiency were considered of similar efficiencies

for calculation purposes. Relative gene expression for individual

VAMPs upon VAMP7 or VAMP8 knockdown was calculated

using the comparative Ct method (DDCt) with actin as the

reference gene. To assure precision among replicates, only

triplicates that generated a standard deviation of less than 0.250

were considered in the analysis to allow the ability to discriminate

between 2-fold dilutions in 95% of the cases.

Cell Culture and Adenovirus Infection
Rat adrenal pheochromocytoma cells [PC-12 cells [69];

provided by Manojkumar Puthenveedu] were grown in DMEM

with 5% FBS and 10% horse serum. MDCK cells were cultured in

Minimum Essential Medium (Sigma) supplemented with 10%

FBS. For adenoviral infection, MDCK T23 cells were cultured for

four days on 12-mm Transwell permeable supports (0.4-mm pore;

Costar, Cambridge, MA), rinsed extensively with PBS and

incubated for 1 h at 37uC with 150 ml of PBS/virus on the apical

surface of the Transwell and 1 mL PBS on the basolateral surface.

These cells stably express the tetracycline transactivator which

drives expression of many of our adenoviral constructs [70].

MDCK T23 cells were used for delivery assays and the parental

cell line MDCK 2001 (used to generate MDCK T23 cells) was

used for experiments measuring cilia length.

DNA and Adenoviral Constructs
Generation of replication-defective recombinant adenoviruses

encoding influenza HA, endolyn, and Ensol are described in

[15,71–73]. cDNA encoding GFP-VAMP7 was kindly provided

by Sergio Grinstein. VAMP7-HA was generated from full length

human VAMP7 pCMV Sport6 cDNA (Thermo Scientific clone

ID 6503665). The open reading frame was amplified using PCR

with 59-CACCATGGCGATTCTTTTTGCTGTTGTTGC-39

and 59-CTAAGCGTAGTCTGGGACGTCGTATGGG-

TATTTCTTCACACAGCTTGG-39 primers and inserted using

the pcDNA3.1-TOPO kit (Invitrogen). Rab4-GFP, and Rab5-

GFP, and Rab11a-GFP cDNAs were gifts from Jim Goldenring.

Rab11a was SNAP tagged by PCR amplification of Rab11a-GFP

and then subcloned into the BamHI and XhoI sites of pSNAP-

tag(m) vector using the following primers: 39-TAGGGATC-

CATGGGCACCCGCGACGACGA-39 and 59-CTAG

CTCGAG CTAGATGTTCTGACAGCACT-39.

SiRNA Oligonucleotides and Transfection
MDCK cells were trypsinized (day 1) and plated to be ,80%

confluent the next day (,36106 cells in a 10 cm dish). On day 2,

transfection reagents were prepared while the cells were trypsin-

ized. For each sample, 75 pmol of siRNA oligo (Sigma) was added

to 62.5 ml OptiMEM (Invitrogen). Lipofectamine (Invitrogen;

3.75 ml in 62.5 ml OptiMEM) was added and the mixture was

incubated for 20 min. The cells were collected and resuspended at

a concentration of 2.46106 cells/mL. Cells (330 ml) were mixed

with 125 ml of siRNA/Lipofectamine/OptiMEM and plated on

each Transwell. Cells were used for experiments on day 6. PC-12

cells were transfected on day 1 using AMAXA electroporation;

26106 cells were mixed with 200 pmol siRNA and electroporated

with program U-029, then plated onto coverslips in four wells of a

12-well dish. The next day, the cells were transfected again using

RNAiMAX (Invitrogen) following the manufacturer’s protocol.

On day 3 the cells were serum starved, and the following day they

were processed for immunofluorescence or RT-PCR. The siRNA

target sequences are as follows: control (firefly luciferase) 59-

GAAUAUUGUUGCACGAUUU-39, VAMP8 canine 59-CCA-

CATCGGAGCACTTCAA-39, VAMP7 canine 59-GAA-

GAGGTTCCAGACTACA-39, VAMP7 rat 59-GAA-

GAGGTTCCAGACCACA-39, VAMP7 #2 59-

GTGGAGGAAACTTCCTGGAG-39, a-gal-A 59-GATA-

GATCTGCTGAAATT-39.

Indirect Immunofluorescence
Cells were fixed in paraformaldehyde and processed for indirect

immunofluorescence as described in [68]. Polyclonal anti-giantin

antibody was a gift from Adam Lindstedt, EEA1 (BD; 1:1000);

Anti-LAMP2 AC17 monoclonal antibody was a gift from Enrique

Rodriguez-Boulan; anti-HA epitope tag monoclonal antibody

(Covance; 1:500) was used for HA tagged proteins. Anti-septin 7

polyclonal antibody (1:500) was a gift from Elias Spiliotis;

polyclonal anti-syntaxin 3 (Abcam) was used at 1:200; polyclonal

anti-BBS3/Arl6 (Santa Cruz) was used at 1:300; TMR-STAR

(New England Biolabs; 3 mM final concentration) was used to label

SNAP-tagged proteins. AlexaFlour conjugated secondary antibod-

ies were from Invitrogen and used at 1:500. Samples were

mounted in ProLong Gold Antifade with DAPI (Invitrogen).

Confocal images were acquired on a Leica SP5 confocal

microscope (100x/1.5 NA objective) and processed using Adobe

Photoshop. To determine Pearson’s Correlation Coefficients,

confocal stacks were opened in Imaris and a median filter

(36361) was applied. Images were subjected to automatic

thresholding using the method from [74]. A region of interest

was selected for calculation of colocalization using the Imaris

Coloc function. In order to determine lysosome volume, confocal

stacks of LAMP2 stained cells were used to produce a 3D

reconstruction of lysosomal volume using Imaris software using its

Surfaces function, with automatic threshold setting. For VAMP7

and control siRNA treated cells, the average individual lysosome

volume was obtained in each stack image and lysosome volume for

VAMP7 knockdown cells was normalized against the average

value obtained for cells treated with control siRNA. Two-sample t-

test was used to assess statistical significance with a of 0.05. For

VAMP7 overexpression experiments, sub-regions of fields where

GFP-VAMP7 was expressed were selected, paired with identically

sized areas in the same fields that were absent for GFP-VAMP7

expression, and average lysosome volume was obtained for each

region. Lysosome volumes in GFP-VAMP7-expressing cells were
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normalized to the average volumes measured in non-expressing

regions and statistical significance was assessed using paired t-test

with a of 0.05.

Biosynthetic Surface Delivery Kinetics
MDCK cells cultured on Transwells for four days were infected

with replication-defective recombinant adenoviruses encoding HA

at a multiplicity of infection (MOI) of 25, endolyn (MOI 100), or

ensol (MOI 50) as described above. The following day, cells were

rinsed with PBS++ (Sigma) and incubated in medium A (cysteine-

free, methionine-free MEM with 0.35 g/liter NaHCO3, 10 mM

MES, and 10 mM HEPES, pH 7.0) for 30 min in a 37uC water

bath. The filters were incubated on a 50 ml drop of [35S]-Easy Tag

(2.5 ml/well for HA) or 35S-cysteine (5 ml/well for endolyn and

Ensol) for 30 min at 37uC. The cells were rinsed once with warm

medium A. Warm media with cysteine and methionine was added

to chase the cells for the indicated time points. HA was then

trypsinized as described in [71] and endolyn was biotinylated as

described in [72]. To quantitate Ensol secretion kinetics, apical

and basolateral media were collected and replaced at each time

point, and cells were solubilized at the final time point [15]. Ensol

was immunoprecipitated from each sample using anti-endolyn

antibody. Protein samples were separated by SDS-PAGE on 4–

15% gradient gels (BioRad). Gels were dried and imaged on

phosphoimager screens (BioRad).

Measurement of Cilia Length
siRNA-transfected MDCK cells grown on Transwells and PC-

12 cells cultured on coverslips were fixed and processed for

indirect immunofluorescence as described above. Anti-acetylated

tubulin monoclonal antibody (Sigma) was used at a dilution of

1:400 to visualize cilia, with secondary antibody and mounting

media as described above. Multiple fields of cells were acquired

using a Leica DM6000B epifluorescence microscope with a 100x/

1.4 NA objective. Images were opened in image J and individual

cilia were traced using the freehand drawing tool to measure

length, standardized by tracing the scale bar. Nuclei in each field

were counted to calculate the percent of ciliated cells.

Measurement of Cyst Formation
MDCK cells transfected with siRNA were plated on plastic for 1

day then trypsinized and 15,000 cells were resuspended in 80 ml
basement membrane Matrigel (BD Biosiences). The Matrigel was

allowed to solidify at 37uC in a 5% CO2 incubator for 30 minutes

before addition of growth medium. The media was changed every

other day for 6 days. Indirect immunofluorescence of cysts was

performed as described in [44]. Knockdown was confirmed by

RT-PCR in duplicate siRNA- treated samples grown on plastic.

Supporting Information

Figure S1 qPCR analysis of VAMP levels in siRNA
treated cells. Relative expression of VAMP1, VAMP2,

VAMP3, VAMP4, VAMP5, VAMP7 and VAMP8 in cells

transfected with VAMP7 or VAMP8 siRNA was quantified over

15 experiments, totaling 4 to 35 replicates for each condition.

Actin was used as a reference gene and relative expression to

samples treated with control siRNA was quantified using the DDCt
method. Median values +/295% confidence intervals are plotted.

*p,0.05 using confidence interval analysis for null of 1.0.

(TIF)

Figure S2 VAMP7 knockdown decreases cilia frequency
and cilia length in PC-12 cells. PC-12 cells were transfected

with siRNA on day 1 and transfected again the following day. On

day 3 the cells were supplemented with serum free media, and 24

hours later were harvested for RT-PCR (A) or processed for

indirect immunofluorescence to stain cilia. (B) The percent of cells

with a primary cilium was quantitated as described in Methods

and was significantly decreased in VAMP7-depleted cells (mean

+/2 SEM of three experiments is plotted; *p,0.05 assessed by

Student’s t-test). (C) Cilia lengths from three experiments were

plotted as in Figure 4. VAMP7 knockdown significantly reduced

cilia length in three experiments (*p,0.05 determined by Mann-

Whitney Rank Sum Test of median cilia length from three

experiments). Control n= 586 cells, VAMP7 KD n=468 cells.

(TIF)

Figure S3 VAMP7 knockdown does not alter the local-
ization of proteins required for ciliary biogenesis. (A)

Control and VAMP7 depleted MDCK cells were fixed and

processed for indirect immunofluorescence to detect syntaxin 3

(Syn3) and acetylated tubulin (Ac Tub) and imaged using confocal

microscopy. A maximal projection of apical sections that include

the primary cilia and a single lateral section are shown. (B and C)

Control and VAMP7 depleted MDCK cells were fixed and

processed for indirect immunofluorescence to detect septin 7 (Sept

7) and acetylated tubulin. Panels in B show apical and lateral

confocal sections of septin 7 distribution in cells, and panels in C

show that colocalization of a subset of Septin 7 with acetylated

tubulin persists upon VAMP7 knockdown. (D) The localization of

Arl6/BBS3 to cilia and sub-ciliary structures was examined in

control and VAMP7 depleted cells using confocal microscopy.

Scale bars: 10 mm.

(TIF)
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