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Eshbach ML, Kaur A, Rbaibi Y, Tejero J, Weisz OA. Hemo-
globin inhibits albumin uptake by proximal tubule cells: implications
for sickle cell disease. Am J Physiol Cell Physiol 312: C733–C740,
2017. First published March 29, 2017; doi:10.1152/ajpcell.00021.
2017.—Proximal tubule (PT) dysfunction, including tubular protein-
uria, is a significant complication in young sickle cell disease (SCD)
that can eventually lead to chronic kidney disease. Hemoglobin (Hb)
dimers released from red blood cells upon hemolysis are filtered into
the kidney and internalized by megalin/cubilin receptors into PT cells.
The PT is especially sensitive to heme toxicity, and tubular dysfunc-
tion in SCD is thought to result from prolonged exposure to filtered
Hb. Here we show that concentrations of Hb predicted to enter the
tubule lumen during hemolytic crisis competitively inhibit the uptake
of another megalin/cubilin ligand (albumin) by PT cells. These effects
were independent of heme reduction state. The Glu7Val mutant of Hb
that causes SCD was equally effective at inhibiting albumin uptake
compared with wild-type Hb. Addition of the Hb scavenger hapto-
globin (Hpt) restored albumin uptake in the presence of Hb, suggest-
ing that Hpt binding to the Hb �� dimer-dimer interface interferes
with Hb binding to megalin/cubilin. BLAST searches and structural
modeling analyses revealed regions of similarity between Hb and
albumin that map to this region and may represent sites of Hb
interaction with megalin/cubilin. Our studies suggest that impaired
endocytosis of megalin/cubilin ligands, rather than heme toxicity, may
be the cause of tubular proteinuria in SCD patients. Additionally, loss
of these filtered proteins into the urine may contribute to the extra-
renal pathogenesis of SCD.
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SICKLE CELL DISEASE (SCD) is a devastating disease resulting
from a single mutation (Glu7Val) in hemoglobin (Hb) that
causes red blood cells to assume a rigid curved shape that
blocks their passage through the vasculature. Obstruction of
capillaries by sickled red blood cells results in ischemia, severe
pain, and necrosis. Additionally, red blood cells (RBCs) in
SCD patients are susceptible to hemolysis, resulting in chron-
ically elevated plasma levels of free Hb that can skyrocket
during hemolytic crises (26). Free Hb in the circulation can
scavenge nitric oxide (NO) produced by endothelial cells,
leading to vasoconstriction that compounds vaso-occlusion
(34). Exposure of cells to heme proteins also triggers the
production of cytotoxic reactive oxygen species (34).

With the development of treatment regimens to increase life
expectancy, kidney manifestations of SCD have become in-
creasingly appreciated. There are numerous renal complica-
tions in SCD, including glomerulopathy, acute kidney injury,
chronic kidney disease, impaired urinary concentrating ability,
and distal nephron dysfunction. Kidney disease currently ac-
counts for �15% of mortality in SCD patients (20). These
complications are due in part to the propensity of red blood
cells to sickle in the hypoxic renal medulla. However, exposure
of kidney cells to Hb liberated during hemolysis also plays an
important role in the progression of renal disease. Released Hb
dimers (consisting of �- and �-globin chains, each with mo-
lecular mass ~16 kDa) are readily filtered into the tubule lumen
with a fractional filtration coefficient of 0.03 (18). At the
normal plasma level of Hb of 3 mg/dl (2 �M), the concentra-
tion in the glomerular ultrafiltrate entering the kidney tubule
lumen is very low, ~60 nM. However, plasma concentrations
of Hb are chronically about tenfold higher in SCD patients, and
during hemolytic crisis, the concentration of plasma Hb can
approach 1 g/dl, resulting in tubular concentrations above 15
�M (21).

Filtered Hb is taken up by the multiligand receptors megalin
and cubilin, which are abundantly expressed in the S1 segment
of the kidney proximal tubule (7). Previous studies show that
Hb binds to megalin and cubilin with relatively high affinity
[1.7 �M and 4.1 �M, respectively (11)]. Megalin and cubilin
also bind with comparable affinities to a large number of other
filtered low-molecular-weight (LMW) proteins and other li-
gands, including vitamin D binding protein, intrinsic factor-
cobalamine (vitamin B12), and parathyroid hormone (10). In
addition, megalin and cubilin take up the low level of
albumin that normally escapes the glomerular filtration
barrier. Disruption of the apical endocytic pathway leads to
tubular proteinuria (aka LMW proteinuria), that if left un-
checked can trigger inflammation and fibrosis resulting in
end-stage renal disease (22).

The PT is known to be especially sensitive to heme toxicity,
and cytoprotective responses (upregulated expression of ferri-
tin, ferroportin, heme-oxygenase I, heme oxygenase II, Hpt,
and hemopexin) have been well characterized in response to
heme-induced injury (19, 31). Consistent with this, tubular
proteinuria has been reported in a significant fraction of SCD
patients, and particularly in younger patients (3, 16, 17). These
patients also exhibit increased excretion of urinary biomarkers
characteristic of tubular injury (27). Tubular proteinuria in
these patients frequently occurred independently of glomerular
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dysfunction, suggesting that PT injury is an initiating step in
the cascade leading to chronic kidney disease in SCD patients.

PT function, including the uptake of filtered megalin/cubilin
ligands, is highly responsive to changes in fluid shear stress
that accompany tubular flow (25, 32). Because NO mediates
mechanosensitive responses in endothelial cells, we wondered
whether Hb released into the tubule lumen during hemolytic
crises might scavenge NO to impair apical endocytosis. To test
this, we assessed whether exposing PT cells to levels of Hb
expected during SCD crisis affects uptake of albumin. We
found that Hb inhibits albumin uptake by PT cells in a
dose-dependent manner. Surprisingly, the effect of Hb is inde-
pendent of any effect on NO and instead results from direct
competition for uptake by megalin/cubilin receptors. Impaired
uptake of normally filtered megalin/cubilin ligands uptake
during hemolytic crisis may explain clinical manifestations of
SCD of unknown etiology.

MATERIALS AND METHODS

Cell culture. All cell culture reagents were from Sigma unless
otherwise specified. Opossum kidney (OK) cells (Didelphis virgini-
ana, adult female, kidney cortex) were cultured in DMEM/F12
medium with 10% FBS (Atlanta Biologicals) and 5 mM GlutaMAX
(GIBCO). HK-2 cells (Homo sapiens, adult male, cortex/proximal
tubules, papilloma immortalized) were cultured in DMEM/F12 with 5
�g/ml insulin, 0.02 �g/ml dexamethasone, 0.01 �g/ml selenium, 5
�g/ml transferrin, 2 mM L-glutamine, and 10% FBS (Atlanta Biolog-
icals).

Quantitation and imaging of endocytosis. HK-2 (5 � 105) or OK
(4 � 105) cells were plated in triplicate samples on 12-mm Transwell
(0.4 �m pore) polycarbonate membrane inserts (Corning) in a 12-well
plate, with 0.5 ml apical medium and 1.5 ml basolateral medium. The
following day, cells were transferred to an orbital shaker set at 74–146
rpm in the incubator and allowed to grow for an additional 3-4 days
with daily medium changes. Unpublished studies in our lab demon-
strate that chronic exposure to orbital shear stress enhances cell
differentiation and endocytic capacity. Although endocytic capacity
was lower, we found similar results to those reported here using OK
cells cultured under static conditions.

For experiments measuring albumin uptake, cells were incubated
with apically added 0.6 �M Alexa Fluor 647-BSA (Thermo Fisher
Scientific) and unlabeled Hb or L-NAME (30 min pretreatment) as
indicated in DMEM/F12 medium with 25 mM HEPES (GIBCO) for
1 h at 37°C under continuous orbital rotation. For endocytosis studies
in Fig. 4B, OxyHb and Hpt (Athens Research and Technology) were
added to cells as indicated 30 min prior to addition of albumin. In
experiments measuring uptake of Hb uptake, cells were incubated
with 2 �M Alexa Fluor 568-conjugated Hb for 1 h at 37°C under
orbital shear stress in the presence of unlabeled albumin or OxyHb as
specified. To quantify the uptake of fluorescent ligands, filters were
washed five times with cold PBS containing Ca2� and Mg2�, solu-
bilized in 300 �l 20 mM MOPS, pH 7.4/0.1% Triton X-100 for 30
min shaking at 4°C, and fluorescence was quantified using the Glo-
Max Multi-Detection System (Promega). Cells on filters used for
imaging were washed, fixed in 4% paraformaldehyde, and imaged
using a Leica TCS SP5 confocal microscope. Maximum projections of
confocal stacks were created in FIJI.

Heme oxygenase 1 expression. HK-2 (5 � 105) cells were cultured
as above in the presence of 50 �M OxyHb for the indicated periods,
then washed, solubilized, and lysates blotted using rabbit polyclonal
anti HO-1 antibody (1:1,500; Abcam ab137749) and mouse mono-
clonal �-actin antibody (1:5,000; Sigma A1978).

Hemoglobin preparation and quantitation. Hemoglobin A (HbA)
was isolated from expired RBC units as described (14, 29). Sickle

hemoglobin (HbS) was obtained from Sigma. Hb concentration and
oxidation state was determined by spectral deconvolution using HbA
standard spectra for met, oxy, and deoxy species as previously
reported (14, 29). Hb concentrations were calculated per mole of
heme. Hb was conjugated to Alexa Fluor 568 using the Protein
Labeling Kit (Thermo Fisher Scientific) according to the manufact-
urer’s instructions.

Sequence and structure analysis. Sequences of human Hb�, Hb�,
and albumin were retrieved from UniProt (Hb � P69905, Hb �
P68871, Albumin P02768). We compared the solvent accessible
surfaces of the hemoglobin dimer in the absence and in the presence
of Hpt as observed in the Hpt-Hb complex (PDB: 4F4O) (4). The
sequences for the individual helices that form the main interactions
with Hpt (Hb � helices G and H, and Hb � helices G and H) were
aligned against the sequence of human albumin using the BLAST and
CLUSTAL W software (2, 30). The sequences identified in human
albumin were compared with the available structure of human albu-
min (PDB: 3SQJ) (13) to evaluate secondary structure conservation.
Protein structures and electrostatic surface potentials were generated
with PyMOL Molecular Graphics System (2002) (DeLano Scientific,
San Carlos, CA).

RESULTS

Hemoglobin inhibits receptor-mediated albumin uptake by
proximal tubule cells. To test whether the NO scavenging by
Hb affects PT endocytosis, we incubated polarized OK cells
for 1 h with apically added 0.6 �M Alexa Fluor 647-albumin
in the presence or absence of 50 �M OxyHb, MetHb, or
CNMetHb. These three forms of Hb have different NO scav-
enging potential, with OxyHb being significantly more potent
(9). As an additional control, we also pretreated cells for 30
min with the NOS inhibitor L-NAME (L-NG-nitroarginine
methyl ester, 100 �M) before adding fluorescent albumin.
Cells were then washed extensively and cell-associated albu-
min was visualized in fixed cells by confocal microscopy (Fig.
1A) or quantified by spectrofluorimetry (Fig. 1B). As we
previously demonstrated, Alexa Fluor 647-albumin readily
accumulated in intracellular vesicular compartments in OK
cells (25). Addition of any of the three forms of Hb during the
albumin incubation profoundly inhibited the uptake of albumin
by PT cells. In contrast, L-NAME had no apparent effect on
albumin uptake. Quantitation of albumin uptake by spectro-
fluorimetry in multiple experiments confirmed these qualitative
observations (Fig. 1B). OxyHb also inhibited albumin uptake
in human proximal tubule HK-2 cells, which also express
megalin/cubilin but have a markedly lower endocytic capacity
than OK cells (Fig. 1C).

The insensitivity of albumin uptake to L-NAME and the
equivalently robust inhibition we observed using Hb forms
with different NO scavenging capabilities suggest that the
effect of Hb on albumin uptake is independent of NO and
independent of the heme reduction state. We hypothesized that
Hb may be directly competing with albumin for binding to
megalin/cubilin. Hb has been demonstrated using surface plas-
mon-reference analysis to bind to megalin and cubilin with
affinities of 1.7 �M and 4.1 �M, respectively (11). In com-
parison, albumin binds to OK apical membranes with a Kd of
0.3 �M (12).

Normalized data from multiple experiments demonstrated a
dose-dependent effect of OxyHb on albumin uptake with an
estimated half-maximal inhibitory concentration of ~5 �M (Fig.
2). OxyHbS containing the SCD-causing mutation Glu7Val
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inhibited with a similar dose response. However, we still
observed ~15% residual albumin uptake even when high con-
centrations of OxyHb (up to 250 �M) were added.

Western blotting confirmed that prolonged exposure of hu-
man PT cells to Hb caused a dramatic elevation in heme-
oxygenase 1 as previously reported; however little if any
upregulation was observed within 4 h of incubation (Fig. 3A).
To confirm that the inhibitory effect of Hb on albumin endo-
cytosis was not due to cellular toxicity, we preincubated cells
with OxyHb for up to 5 days with 10–50 �M OxyHb, then
washed the cells and examined the effect on endocytosis of
Alexa Fluor 647-albumin in the absence of competing Hb. As
shown in Fig. 3B, preincubation with Hb had no effect on
albumin uptake. Consistent with our previous results above,
inclusion of 10 �M OxyHb in the apical medium during the 1 h
uptake period reduced albumin endocytosis by �60%. In
contrast, when OxyHb was added to the basolateral medium of
the Transwell filter supports, it had no effect on albumin uptake
(not shown).

Albumin inhibits hemoglobin uptake by proximal tubule
cells. Hb has previously been shown to be internalized by cells
in the PT via a megalin-dependent pathway (11). In those
studies, addition of BSA did not inhibit Hb binding, suggesting
that albumin and Hb may interact with distinct sites on mega-

lin/cubilin. To examine this in OK cells, we incubated OK cells
with 1 �M apically added Alexa Fluor 568-OxyHb for 1 h,
then fixed and imaged the cells. As shown in Fig. 4A, Hb was
internalized into vesicular compartments similar to those ob-
served with fluorescent albumin (Fig. 1A). As expected for a
receptor-mediated event, uptake was abolished by inclusion of
excess unlabeled Hb during the incubation period (Fig. 4A).
We also observed significant inhibition of Hb uptake upon
inclusion of 30 �M albumin (Fig. 4A). To test this further, we
examined the dose dependence of albumin inhibition of Hb
uptake using our spectrofluorimetry assay. In these experi-
ments we found that 50 �M unlabeled Hb inhibited the uptake
of fluorescently conjugated Hb by ~75% and 30 �M albumin
inhibited Hb uptake by ~50% (Fig. 4B).

Haptoglobin inhibits Hb uptake by PT cells and restores
albumin endocytosis. Hpt is a large (unfiltered) protein in
serum that binds with very high affinity (estimated Kd � 10�12

M) to the dimer-dimer interface of Hb (4) (1, 5). We found that
10 �M Hpt inhibited uptake of Alexa Fluor 568-OxyHb by OK
cells (Fig. 5A). We used our spectrofluorimetry assay to con-
firm this quantitatively. However, because of the prohibitive
cost of Hpt, we performed these assays with low concentra-
tions of OxyHb (7.5 �M) and stoichiometric amounts of Hpt.
As shown in Fig. 5B, addition of 7.5 �M OxyHb to OK cells
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Fig. 1. Hemoglobin inhibits apical uptake of albumin by PT cells. A: filter-grown OK cells were preincubated for 30 min at 37°C with L-NAME (100 �M) where
indicated and then exposed to 0.6 �M apically added Alexa Fluor 647-albumin in the presence or absence of 50 �M MetHb, CNMet-Hb, or OxyHb for 1 h at
37°C. After extensive washing, cells were fixed and processed for immunofluorescence to visualize cell-associated albumin. Representative fields are shown.
Scale bar, 25 �m. B: cells incubated as above were solubilized, and cell-associated albumin was quantified by spectrofluorimetry. Mean albumin uptake in control
cells was set at 100 to facilitate comparison between experiments. The results from several independent experiments (means 	 SD of triplicate samples) are
plotted, with each experiment represented by a different symbol. The mean uptake for a given condition is represented by the bar. C: filter-grown human HK-2
cells were incubated for 1 h at 37°C with 0.6 �M Alexa Fluor 647-albumin in the presence or absence of 50 �M OxyHb. Cell-associated albumin was quantified
as above, and the mean 	 SD of three independent experiments each performed in triplicate is plotted.
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inhibited the uptake of Alexa Fluor 647-albumin by ~30%.
Preincubation of 7.5 �M OxyHb for 30 min with 7.5 �M Hpt
restored albumin uptake to nearly control levels (Fig. 5B). Hpt
also reversed the inhibitory effect of HbS on albumin uptake
with comparable efficacy (not shown). Addition of 7.5 �M Hpt
without Hb resulted in a minor but not statistically significant

reduction in albumin uptake, suggesting that Hpt itself may
weakly inhibit albumin uptake as well.

Modeling the hemoglobin interaction site with megalin. As
shown above, our results indicate that low concentrations of
Hb (
10 �M) can impair albumin uptake. In addition, stoi-
chiometric amounts of Hpt prevent this inhibition. The struc-
ture of the Hb-Hpt complex is known, involving two Hpt
molecules and a Hb dimer (4). Thus it is reasonable to hypoth-
esize that the binding site of Hb to megalin/cubilin may no
longer be exposed upon the formation of the Hb-Hpt complex.
In addition, the competitive effect of albumin suggests that the
binding sites used by albumin and Hb may share similar
properties. Based on these premises we searched for Hb motifs
that met the following conditions: 1) are solvent-exposed in the
dimer Hb structure, 2) are involved in the Hb-Hpt interface, 3)
share sequence and structural similarity to motifs in albumin,
4) share electrostatic surface similarities to motifs in albumin.

The interaction of Hb and Hpt covers a large (2,954 Å2)
surface with a number of Hb motifs involved (4). The regions
of Hb involved in the interface include the helices G and H in
Hb � and the helices C, G, and H of Hb � (4). As albumin and
Hb are all-�-helical proteins, we used individual Hb �-helices
as our search motif.

The Hb helical fragments involved in Hpt binding were
aligned to human albumin sequence to search for comparable
albumin motifs. Portions of albumin showing sequence homol-
ogy to the Hb sequences were inspected for similar secondary
structure. Three regions of albumin with sequence homology
and similar secondary structure were identified (Fig. 6). Based
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on these results we conclude that helices G and H in Hb may
be involved in the interaction with megalin/cubilin.

DISCUSSION

Our results demonstrate that binding of Hb to megalin/
cubilin competes directly for the uptake of albumin by PT
cells. We observed potent inhibition of albumin uptake by
concentrations of Hb predicted to enter the tubule lumen in
patients during hemolytic crisis. We hypothesize that compe-
tition for ligand binding by excess Hb in the tubule lumen,
rather than cytotoxic responses to heme, are the cause of
tubular proteinuria frequently observed in SCD patients. Ad-
ditionally, loss of these ligands may contribute to impaired
vitamin homeostasis in SCD patients.

We found that 5 �M Hb and HbS inhibited albumin uptake
by ~50%; however, we were unable to fully prevent uptake
even at much higher concentrations of Hb. This suggests that
albumin binds to multiple sites on megalin/cubilin, only some
of which are inhibited by Hb. This is likely given that these
receptors contain multiple ligand binding domains to engage a
broad array of filtered ligands (10). Additionally, non-receptor-
mediated mechanisms may contribute to the small amount of
residual albumin uptake at high Hb concentrations.

Our data suggest that the interaction site for Hb with mega-
lin/cubilin overlaps the Hpt binding site within the dimer-dimer
interface. Based on this finding and on BLAST searches for
regions of homology between albumin and Hb that map to this
interface, we identified three sequences in albumin as putative
binding motifs for megalin/cubilin, due to their sequence and
structure similarities with Hb domains that are involved in Hpt
binding.

A surprising finding is that whereas PT cells are highly
sensitive to Hb, we did not observe any apparent toxicity in OK
or HK-2 cells even after prolonged exposure to OxyHb. Con-
trol studies confirmed upregulation of heme oxygenase 1 in
HK-2 cells exposed to OxyHb as previously reported (6).
However, preincubation of OK cells with 50 �M OxyHb for up
to 5 days did not impair subsequent albumin uptake. It is
possible that other functions of our cells are compromised by
exposure to Hb.

Our findings have potential implications for our understand-
ing the pathogenesis of SCD. Hb ��-dimers in the plasma are
readily filtered into the tubule lumen in the absence of glomer-
ular injury and reach concentrations during hemolytic crisis
that would significantly impair the reabsorption of albumin and
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Fig. 6. Sequence and structure comparison of potential megalin/cubilin binding regions in hemoglobin and albumin. Hb helical fragments involved in haptoglobin
binding were aligned to human albumin sequence to search for comparable albumin motifs (see MATERIALS AND METHODS for details). Three sequences in albumin
were identified that have sequence and structural similarity to Hb. Top: alignment of Hb �- and �-helix H to albumin residues 244–271. The sequence alignment
is shown on top. Aligned sequences are shown in the structures of albumin and Hb ��-dimer and indicated by a red box. Helical elements are shown in red
(albumin, hemoglobin �) and salmon (hemoglobin �); Middle: alignment of Hb �- and �-helix H to albumin residues 561–588. The sequence alignment is shown
on top. Aligned sequences are shown in the structures of albumin and Hb ��-dimer and indicated by a red box. Helical elements are shown in pink (albumin)
red (hemoglobin �), and salmon (hemoglobin �) Bottom: alignment of Hb �- and �-helix G to albumin residues 87–105. The sequence alignment is shown on
top. Aligned sequences are shown in the structures of albumin and Hb ��-dimer and indicated by a blue box. Helical elements are shown in dark blue (albumin,
hemoglobin �) and cyan (hemoglobin �).
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other megalin/cubilin ligands. Thus, our finding may explain
why a significant fraction of young SCD patients exhibit LMW
proteinuria independent of glomerular damage (3, 17). Pro-
longed exposure of PT cells to Hb is likely to overwhelm
protective responses and lead to tubular injury that may initiate
and/or contribute to the progression of chronic kidney disease/
end-stage renal disease in SCD patients.

Our results suggest a possible explanation for why children
with severe manifestations of SCD have abnormally low levels
of 25-hydroxyvitamin D3 [25(OH)D3] (23) and low bone
mineral density (15). Defective uptake of filtered ligands by
megalin/cubilin in the PT is known to affect serum vitamin
levels. This is especially evident in the case of vitamin D3,
which is taken up by megalin/cubilin in its inactive, insoluble
form [25(OH)D3] bound to vitamin D binding protein (VDBP),
converted to the active 1,25(OH)2D3 form, and released from
the basolateral surface of PT cells into the bloodstream (33).
For example, patients with Dent disease, caused by mutations
in a PT hydrogen-chloride antiporter that plays a role in apical
endocytosis, have low levels of vitamin D3 and frequently
develop osteomalacia and hypophosphatemic rickets (28). Cu-
bilin-deficient dogs also have lower serum levels of mono- and
dihydroxylated vitamin D3 metabolites (24). Although we did
not test whether Hb competes for uptake of VDBP, it is notable
that VDBP is highly homologous to albumin (8). Our studies
provide a potential mechanism to explain the early steps in the
development of kidney disease and suggest the possibility that
selectively targeting the interaction of Hb with megalin/cubilin
may have therapeutic value beyond simply preserving PT
function in SCD patients
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